
David Clauvel
Specialist Solutions Architect
@automaticdavid

January 28, 2019

AUTOMATION FOR NETWORK INFRASTRUCTURE

Why Automation for Networks?

MANAGING NETWORKS
HASN’T CHANGED

IN 30 YEARS.

WHAT IS THE PRIMARY METHOD OF MAKING NETWORK
CHANGES IN YOUR ENVIRONMENT?

WHY HASN’T NETWORKING CHANGED?

PEOPLE PRODUCTS

Infrastructure-focused features

Baroque, CLI-only methodologies

Siloed technologies

Monolithic, proprietary platforms

Domain specific skillsets

Vendor oriented experience

Siloed organizations

Legacy operational practices

BIGGEST CHALLENGE FOR ENTERPRISES: CULTURE!

Traditional Network Ops Next-Gen Network Ops

• Legacy culture

• Risk averse

• Proprietary solutions

• Siloed from others

• “Paper” practices, MOPs

• “Artisanal” networks

• Community culture

• Risk aware

• Open solutions

• Teams of heroes

• Infrastructure as code

• Virtual prototyping / DevOps

WHY ANSIBLE FOR NETWORK AUTOMATION?

BUILD
with Red Hat Ansible Engine

● Get automating quickly.

● Integrate multi-vendor
configurations.

● Ideal for both existing and
greenfield.

Automate
discrete tasks

MANAGE
with Red Hat Ansible Engine

● Methodically track
configuration drift.

● Make changes across any set
of network devices.

● Validate that changes were
successful.

Automate
business processes

SCALE
with Red Hat Ansible Tower

● Ensure ongoing steadystate
on a schedule.

● Use role-based access
controls with specific teams.

● Integrate external third-party
solutions with RESTful API.

Orchestrate & operationalize
automation

Configure, validate, & ensure continuous compliance for physical network devices

#

Infrastructure as YAML
• Backups/restores can be automated
• Manage “golden” versions of configurations

Configuration management
• Changes can be incremental or wholesale
• Make it part of the process: agile, waterfall, etc.

Ensure an on-going steady-state
• Daily, weekly, monthly scheduled tasks
• State checking and validation

HOW ARE THEY GETTING THERE?

“Start small, Think big!”

HOW ANSIBLE DOES WORK ?

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE
PLAYBOOK

CORE NETWORK COMMUNITY

HOW DOES NETWORK AUTOMATION WORK?

NETWORKING
DEVICES

Module code is
executed locally on
the control node

LINUX
HOSTS

Module code is copied
to the managed node,
executed, then
removed

CONTROL NODE

CONTROL NODE

ANSIBLE NETWORK AUTOMATION

ansible.com/for/networks
galaxy.ansible.com/ansible-network

Ansible Network modules comprise 1/3 of all modules that ship with Ansible Engine

700+
Network
Modules

50
Network

Platforms

12*
Galaxy

Network Roles

7 Platforms
28 Modules

17 Platforms
141 Modules

29 Platforms
267 Modules

33 Platforms
463 Modules

2.1
May 2016

2.2
Oct 2016

2.3
Apr 2017

2.4
Sep 2017

NETWORK AUTOMATION PROGRESS
40 Platforms
572 Modules

2.5
Mar 2018

45 Platforms
639 Modules

2.6
Jun 2018

50 Platforms
700 Modules

2.7
Oct 2018

A10

Apstra AOS

Arista EOS, CVP

Aruba Networks

AVI Networks

Big Switch Networks

Brocade Ironware

Cisco ACI, AireOS, ASA, Firepower,
IOS, IOS-XR, Meraki, NSO, NX-OS
Citrix Netscaler

Cumulus Linux

Dell OS6, OS9, OS10

MikroTik RouterOS

Openswitch (OPX)

Ordnance

NETCONF

Netvisor

OpenSwitch

Open vSwitch (OVS)

Palo Alto PAN-OS

Nokia NetAct, SR OS

Ubiquiti EdgeOS

VyOS

NETWORK MODULES: BUILT-IN DEVICE ENABLEMENT

Exoscale

Extreme EX-OS, NOS,
SLX-OS, VOSS

F5 BIG-IP, BIG-IQ

Fortinet FortIOS, FMGR

Huawei CloudEngine

Illumos

Infoblox NIOS

Juniper JunOS

Lenovo CNOS, ENOS

Mellanox ONYX

RED HAT ANSIBLE NETWORK AUTOMATION

• Developed, maintained, tested, and supported
 by Red Hat, includes Ansible Engine, Ansible Tower

• 140+ supported modules and growing*

• Red Hat reports and fixes problems

• Networking Modules and Roles included

*take special note of the specific supported platforms

NETWORK MODULES INCLUDED SUPPORT:

Arista EOS

Cisco IOS

Cisco IOS XR

Cisco NX-OS

Infoblox NIOS

Juniper Junos

Open vSwitch

VyOS

PLAYBOOK EXAMPLE

- name: run multiple commands and evaluate the output
 hosts: cisco
 gather_facts: no
 connection: network_cli
 tasks:
 - name: show version and show interfaces
 ios_command:
 commands:
 - show version
 - show interfaces
 wait_for:
 - result[0] contains IOS
 - result[1] contains Loopback0

NETWORK MODULES

*_command:
 Run command get/use output

*_config:
 Make a change to the config with context

*_facts:
 Get information (e.g. OS version,

interfaces, etc.)

- name: configure network interface
 net_interface:
 name: “{{ if_name }}”
 description: “{{ if_description }}”
 enabled: yes
 mtu: 9000
 state: up

- name: configure bgp neighbors
 net_bgp_neighbor:
 peers: “{{ item.peer }}”
 remote_as: “{{ item.remote_as }}”
 update_source: Loopback0
 send_community: both
 enabled: yes
 state: present

- iosxr_interface:

 ...

- iosxr_bgp_neighbor:

 ...

- nxos_interface:

 ...

- nxos_bgp_neighbor:

 ...

- junos_interface:

 ...

- junos_bgp_neighbor:

 ...

- eos_interface:

 ...

- eos_bgp_neighbor:

 ...

- ios_interface:

 ...

- ios_bgp_neighbor:

 ...

PLATFORM AGNOSTIC MODULES

AGGREGATE RESOURCES

- name: configure vlans neighbor
 net_vlan:
 vlan_id: “{{ item.vlan_id }}”

 name: “{{ item.name }}”

 state: “{{ item.state | default(‘active’) }}”

 with_items:

 - { vlan_id: 1, name: default }

 - { vlan_id: 2, name: Vl2 }

 - { vlan_id: 3, state: suspend }

- name: configure vlans neighbor
 net_vlan:
 aggregate:
 - { vlan_id: 1, name: default }

 - { vlan_id: 2, name: Vl2 }

 - { vlan_id: 3, state: suspend }

 state: active

 purge: yes

DECOUPLE IT!

project_tag: foo
tenant_nets:
 - 192.133.157.0/24

fw_outside_ip: 192.133.159.73
fw_inside_ip: 192.133.159.137

vlan_data:
 - { vlan_id: 1, name: default }
 - { vlan_id: 2, name: Vl2 }
 - { vlan_id: 3, state: suspend }

interface_data:
 - { name: Ethernet0/1, mtu: 256, description: test-interface-1 }
 - { name: Ethernet0/2, mtu: 516, description: test-interface-2 }

port_data:
 - { desc: "mcp1.titan1", switch: "aa17-n9k-1", interface: "Ethern
 - { desc: "mcp1.titan1", switch: "aa17-n9k-2", interface: "Ethern

 - name: Creating aggregate of vlans
 nxos_vlan:
 aggregate: “{{ vlan_data }}”
 state: active
 purge: yes

 - name: Add interface using aggregate
 nxos_interface:
 aggregate: “{{ interface_data }}”
 duplex: full
 speed: 100
 state: present

Definition Implementation

Define Once Apply Many

NETWORK ENGINE & NETWORK FUNCTIONS

● Data driven workflows for
performing network operator tasks

● Extensible and adaptable for any
platform, any device

● DIY => MIY

● Ansible Role decoupled from
mainline development branch

● Incubate new capabilities and
accelerate automation adoption

● Biweekly release cycle

NETWORK FUNCTIONSNETWORK ENGINE

Deliver FRICTIONLESS network automation for SEAMLESS orchestration of workloads

ANSIBLE NETWORK STACK ARCHITECTURE

NETWORK MODULES

CONNECTION PLUGINS
(CLI, API, NETCONF)

VIRTUAL NETWORK PHYSICAL DEVICESSDN CONTROLLERS

ANSIBLE ENGINE

CONFIGURATION OPERATIONS
NETWORK ENGINE

NETWORK FUNCTIONS
DEVICE APPLICATION CLOUD OPERATOR

FOCUSED

DEVELOPER
FOCUSED

ANSIBLE TOWER

- Audit
- RBAC
- Credentials
- Inventory
- Web UI
- REST API
- Survey

• Information / Inventory Retrieval and Configuration
– Ad hoc or bulk, generate reports
– Iteration over specific network segments, VLANs, VRFs

• State Checking and Validation
– Compare running configs to desired configs

• Run & Delegate discrete commands
– Manually, API via Tower, Scheduled via Tower

AUTOMATION USE CASE EXAMPLES

AUTOMATION USE CASE EXAMPLES

• Continuous Compliance
– Combining stateful validation with schedules
– Logging and Aggregation
– Configuration backup

• Integrations
– End to end automation
– Zero touch provisioning using a callback

VERSION CONTROL YOUR TOPOLOGY & DATA MODEL

NETWORK CI WORKFLOW

 C
on

tr
ol

 V
er

si
on

Notifies of
pass / failCheck Out Branch

Monitors
repository for

changes

Deploy Playbooks

Test changes

Notifies of
deployment

Notify of PR

Check In Branch /
Create PR

Make Changes

Merge Branch

Pulls new
Playbooks

Ansible Playbook

1
2

3 4

